
 - 1 -

Goal-directed Software Assistant for
a Planning Advisory System

 Peng Yu

Computer Science and Artificial

Intelligence Lab, MIT

yupeng@mit.edu

MAS.761 Final Project Report

ABSTRACT

In this paper, I present an assistant program for a scientific

plan advisory system that can help amateur users identify

problems in unexpected situations and find related

instructions for resolving them. This assistant program uses

commonsense reasoning to map the users’ problem

descriptions into related concepts used by the advisory

system, and to generate explanations for the possible causes

of failure and instructions on recovery procedures using the

system. The commonsense reasoning layer resolves the

mismatch between the users’ knowledge and the advisory

system’s model, and therefore enables the user to easily

communicate to the system’s high functionality interface.

INTRODUCTION

In today’s software market, there are many professional

applications developed for the specific domains of business,

industry and everyday lives. Some widely used software in

this category includes Photoshop for image editing,

Solidworks for mechanical design, and Microsoft Project

for project management. Their rich capabilities have greatly

helped professionals in their specialties domain to address

more problems and more efficiently. However, their

complicate user interfaces have long been a barrier that

prevents most amateur users to benefit from their

capabilities. Usually, this type of software employs high

functionality interfaces with countless buttons and menus to

make it more efficient for advanced users to access desired

functions quickly. In addition, their functions and

operations are often described using non-intuitive

expressions for improved accuracy, which creates many

jargons and makes it even more difficult for beginners.

I summarize the difficulties of using a high functionality

interface as the following two issues:

(1) Communicating accurate problem descriptions or

expected outcomes.

(2) Identifying the correct procedures for achieving the

objectives.

Much effort has been devoted into (2) through developing

tutorials and training sessions for beginners to learn the

operations. Nowadays, it is very easy to find detailed step-

by-step instructions for any software online or in their help

menu. On the other hand, little has been done for the first

issue on improving the communication between users and

high functionality software. Modern software is still using

indexed list or searching help contents to locate the answers

to the users’ questions, which were developed decades ago.

The methods assume that the users have prior knowledge

about the software and can describe the problems

accurately, which is not a realistic expectation for beginner

users.

In this paper, a new approach is presented to bridge this gap

by incorporating a commonsense reasoning layer to map the

users’ problem descriptions into the definitions used by the

software and its tutorials. Given a problem description, I

first generate explanations of the problem using similar

concepts in the software’s knowledge base. Then explore

possible causes and effects by propagating neighboring

assertions with causal relations. Finally, the solutions to the

users’ problem are generated by looking through related

assertions to all concepts found in the first two steps with

resolution relations. This is motivated by the goal-directed

user interface presented in [2], with application in the

domain of high-functionality software.

This approach has been implemented as an assistant

program for a cruise mission plan advisory system. The

plan advisory system is used to help oceanographers

arrange and schedule tasks during a scientific expedition

[1]. The interface of the plan advisor is one example of high

functionality user interfaces with more than 200 operations,

most of which are non-trivial for ocean scientists without

background in automated planning. The assistant program,

named as “Captain Kirk”, can automatically generate

instructions that address the users’ problems. The user can

express the problem or describe the faulty situation in plain

English, without having any prior knowledge or reference

to the command dictionary.

In this paper, I first present the background of the plan

advisory system and formally define the problem of

identifying and mapping users’ problem description to

instructions. Then I present the detailed approach and

implementation of the assistant program. Finally, I

demonstrate its application using a failed plan recovery

scenario, and show a set of initial experiment results.

mailto:yupeng@mit.edu

 - 2 -

BACKGROUND

The cruise plan advisory system was developed jointly with

the Deep Submergence Lab at Woods Hole Oceanographic

Institute, and is aimed at providing decision support for

scientists in mission planning before and during an

expedition. An expedition cruise can lasts for two to five

weeks, and is usually supporting multiple scientific

experiments at different locations. Planning such a cruise is

very challenging due to its complexity and uncertainty:

there are always more tasks to do than what the cruise can

support, and there can be large uncertainty in getting the

expected science returns. In addition, unexpected weather

changes and equipment failures are often encountered at

sea, which may interrupt the execution of cruise plans and

delay all operations for days. Therefore, it takes years of

experience for a scientist to be qualified for leading an

expedition. A lead scientist must learn to make the cruise

plan as robust as possible and have a prioritized list of

scientific goals. When unexpected failure occurs and makes

the original plan over-subscribed, he/she must make trade-

offs between objectives and adjust the plan accordingly to

ensure the completion of high priority tasks.

The plan advisory system was designed to take over some

of the planning tasks, reduce the workload of the scientists

and increase the reliability of the cruise plans. It provides

the following three capabilities:

1. Task selection, sequencing and scheduling.

2. Failure detection and recovery through goal

relaxation.

3. Human resources and assets management.

The advisory system is supported by the Conflict-Directed

Relaxation with Uncertainty algorithm. The algorithm was

developed for efficiently resolving infeasible conditional

problems. With the advisory system, the users only need to

provide the goals of the expedition, temporal requirements

and uncertainty in each activity. The system will provide a

solution, which consists of the following four items:

1. A sequence of activities that achieves the goals.

2. The schedule of each activity.

3. (Optional) Low priority goals that cannot be

achieved.

4. (Optional) Temporal requirements that have to be

relaxed.

The user specifies the goals and requirements using a 2D

graphical interface (Figure 1). The solutions are presented

in both a calendar like graph (Figure 2) and a Gantt chart

(Figure 3). The users control the solution process using a

separate control panel. They can also edit the generated

plan directly, or recovery from a failure using the

interruption handler (Figure 4). The advisory system was

implemented to reduce the layers of menus and provide

more direct access to functions. Therefore, there are

considerable amount of buttons on each tab and each

responsible for a specialized function.

Figure 1 Interactive Goal Graph

Figure 2 Calendar Like Solution Graph

Figure 3 Gantt Chart Like Solution Graph

The initial feedback returned from the users was mixed: the

scientists believe that the capabilities provided by the

advisory system would be very useful on cruise planning,

but the user interface is too complicated to learn. Most of

them are geologists and do not have background in

computer science and artificial intelligence. They find it

hard to understand the functions and descriptions of each

button. It is also difficult for the scientists to communicate

the problems to the system, and identify the correct

functions to use for resolving them.

The feedback revealed two issues. First, there is a mismatch

between the scientists’ and the system’s problem

descriptions. This is due to the gap between their

knowledge base and contributes to the communication

problem.

 - 3 -

Figure 4 Failure Recover Scheduler Window

Second, the layout of the interface is not intuitive enough

for the users to find the correct procedures to address their

problems. The second problem has been well studied and is

usually addressed by making tutorials and instruction sets

for each specific problem. However, there is not much work

done for the first problem: people are still using keyword

search or index to locate the answers to their problems. If

the users do not have much prior knowledge about the

system and some terminologies, it will be very difficult for

them to communicate their problem accurately using these

methods. In this paper, I address this problem by using the

common-sense reasoning tool, D4D, to find the mapping

between the users’ and system’s descriptions.

PROBLEM STATEMENT

In this section, I define the problem addressed in this paper:

mapping users’ goal/failure descriptions to the advisory

system’s step-by-step instructions that help the users

achieve their goals/resolve their problems. I will also

demonstrate the inputs and expected outcomes of the

system.

Figure 5 Expected Behavior of the Assistant Program

The flow of the assistant program is presented in Figure 5.

The program has a text box for the user to type or speak the

input. The input can be a plain English sentence that

describes the user’s objective, such as “I want to extend the

exploration time at site A”. It can also be a short expression

that describes a (potential) failure situation, such as

“propeller shaft overheating”. The users are not required to

use any specific terminology or reference the command

dictionary in the descriptions.

The advisory system should give two outputs:

1. (Optional) If the user is looking for a solution to a

problem, the advisory system should generate

explanations on the possible causes and effects of

the problematic situation.

2. Step-by-step instructions for the user to achieve

the goal or resolve the problem. There might be

more than one set of instructions if there are

multiple problems need to be addressed.

For example, the user may tell the assistant program about

an expected weather change: “Typhoon is expected in the

next 24 hours”. The assistant program should provide the

following explanations and instructions:

- Typhoon is a type of bad weather, and can cause

ship down time and sensor down time.

- Please use the ship and sensor down time

scheduler to adjust your plan, following these

steps:

(1) double-click the current activity to bring up the

down time scheduler window; (2) select Ship and

Sensor as the affected assets; (3) Input the

expected start time and duration of the bad

weather; (4) click “schedule down time” button to

confirm and close the window.

APPROACH

A 5-step approach is constructed to communicate the users’

descriptions to the advisory system, and generate the

correct instructions for addressing the users’ needs. The

commonsense reasoning capability is provided by D4D [3]

over two knowledge bases: one customized knowledge

base, called Kirk, for concepts related marine time activities

and the advisory system; the other one is blended using

Kirk and ConceptNet 4. The five steps in this approach are

the followings:

1. Find the most similar known concepts.

2. Find explanation and definition concepts.

3. Identify causes and effects.

4. Generate abstract solutions for goals or problems.

5. Map the abstract solutions to detailed instructions.

Step 1 and 2 are used to explain the users’ requests,

through finding concepts and related definitions in the

specialized knowledge that are most similar to the users’

descriptions. Step 3 explores possible causes and effects, if

the user describes a problem or failure situation. Finally,

Step 4 and 5 generates instructions for the users, based on

the explanations and consequences discovered in the

previous steps. This “Explain – Explore – Generate”

process is illustrated in Figure 6.

Figure 6 An Overview of the Approach

 - 4 -

Explain

The users’ descriptions are usually in plain English and

may not direct match with the terminologies used in the

Kirk knowledge base. The first step is to build the

connection between them. To map the request from the

commonsense domain to the specialized domain about

science explorations, the assistant program iterates through

all concepts in Kirk and asks ConceptNet 4 to provide a

score on their similarities to the concepts in the users’

descriptions. The top two concepts are selected as the

explanation for the users’ description in the specialized

domain.

For example, if the user asks about “typhoon”, the concepts

“storm” and “thunderstorm” in Kirk will be selected since

they the highest similarity score (Figure 7). The rest of the

concepts are discarded to restrict the breadth of the

mapping and simplify the results.

Figure 7 Mapping "Typhoon" to the Kirk Knowledge Base

Next, the set of explanation concepts are expanded for one

more step using definitive and related concepts. This is

done through exploring their neighboring assertions with

“IsA”, “DefinedAs” and “ConceptuallyRelatedTo”

relations. For example, concepts “storm” and

“thunderstorm” can be extended to a more general concept

“bad weather” through assertions “storm is a bad weather”

and “thunderstorm is a bad weather” (Figure 8).

Figure 8 Extending Concepts using Definitions

Explore

The sets of instructions for the advisory system are

designed to resolve specific issues. However, the user may

not be aware of the real problems and provide accurate

descriptions at all time. Instead, the descriptions may be a

simple statement on their observations, such as “the shaft is

overheating”. In the next stage, the assistant program

explores the possible causes and consequences of the

problem/failure stated by the users. This is achieved

through examining the neighboring assertions of all related

concepts generated in the previous two steps: if the

assertion has a causal relation, such as “Causes”,

“CreatedBy” and “HasA”, then its cause or effect concept

will be recorded.

Figure 9 Exploring Causes and Effects

For example, given the concepts “storm”, “thunderstorm”

and “bad weather”, the following six consequences can be

found (Figure 8). They are ranked based on the truth score

given by the blended Kirk and ConceptNet 4 knowledge

base. This score can also be used to indicate the priority of

each effect: if the user does not have enough time to

address all the problems, he/she can start with the problems

on top of the list.

Generate

The final stage of the mapping process is to locate the

solutions, which are sets of instructions that achieve the

users’ goals or resolve their problems. In the Kirk

knowledge base, each instruction set is represented by an

abstract concept and is linked to other concept through

solution relations, such as “UsedFor” and “CapableOf”.

These abstract solution concepts are the keys to the

complete sets of instructions, and are stored in a pre-

generated hash table. To locate these abstract concepts

once the causes and effects of the user’s problem has been

identified in the previous steps, the assistant program

searches through the neighboring assertions with solution

relations. The last step is to map the abstract solution

concepts to the complete instructions, and present them to

the user.

Figure 10 Generating Solution Concepts and Instructions

For example, given the failure “ship down time”, the

assistant program will identify the assertion “ship down

time scheduler UsedFor ship down time”. It then searches

through the hash table using the key “ship down time”, and

locate the corresponding instructions for the user (Figure

10).

 - 5 -

EVALUATION

In this section, I evaluate the performance of this assistant

program in helping users find the instructions that resolve

their problems. The performance has two aspects: accuracy

and coverage. Accuracy describes if the assistant program

finds the correct instructions for the problems, while

coverage describes how many types of situations the

assistant program can handle. A set of twenty different user

requests, presented in plain English, is used in this

evaluation. These sample requests come from some

common failures during a science expedition cruise, such as

“we are very sleepy” and “engine temperature high”. Due to

time limit, this evaluation only covers the requests in the

domain of failure recovery. Requests in other domains, such

as model modifications and resource management, will be

tested in future evaluations. The results are presented in

Table 1.

Table 1 Summary of Evaluation Results

 Instructions Found
Instructions

Not Found
Accurately

Resolved

Inaccurately

Resolved

storm is coming 1 0 0

we are sleepy 1 0 0

shaft overheat 1 0 0

engine temperature high 0 1 0

typhoon is coming 1 0 0

communication is offline 0 1 0

sonar is broken 0 1 0

satellite link is down 0 1 0

air leak detected 0 1 0

high wave is expected 1 0 0

water supply insufficient 0 0 1

fuel is running low 0 1 0

power outage detected 0 1 0

low battery power 1 0 0

navigation system offline 1 0 0

food supply is low 0 1 0

internet connection lost 0 1 0

crew fatigue level high 1 0 0

short circuit is detected 1 0 0

gas pressure is high 0 1 0

Total 9 10 1

As can be seen from the table, the assistant program found

instructions for more than 90% of the requests. This is

mainly due to the wide coverage of ConceptNet 4. It made

several intelligent inferences for connecting unknown

concepts to the Kirk knowledge base, such as “Navigation –

satellite link” and “sleepy -- fatigue”. However, less than

50% of the requests were answered with the correct

instructions: the assistant program has a large bias towards

connecting failures to concepts related bad weathers, such

as “hurricane” and “thunderstorm”. It is more likely to

assign a high similarity score to those weather related

concepts than others, hence causes the inaccuracy problem.

To address the issue and improve the performance of the

assistant program, it is necessary to refine the inference

process of D4D and make it more reliable. Currently its

similarity score may be inconsistent between very similar

concepts, especially on blended knowledge bases. In

addition, sometimes it is useful to allow the user adjust the

trade-off between accuracy and coverage: when the user has

enough time he/she may want to see as many options as

possible and make the decision themselves. On the other

hand, if the situation is urgent, the user may only need to

instruction with top priority and execute it immediately.

CONCLUSION

This paper introduces the design and implementation of an

assistant program, called “Captain Kirk”, for a mission

advisory system that helps marine scientists to plan their

expeditions. The assistant program helps mapping the

users’ problem and goal descriptions, presented in plain

English, to sets of pre-defined instructions. This makes it

much easier for beginner users without computer science

background to utilize the capabilities of the advisory

system, which comes with a high functionality interface.

Preliminary evaluation results have demonstrated that the

assistant program covers a wide range of requests. The

evaluation also reveals its lack of accuracy in the

identification of relevant instruction, which will be

addressed in future development.

REFERENCES
[1] Continuously Relaxing Over-constrained Conditional

Temporal Problems through Generalized Conflict Learning and

Resolution, Peng Yu and Brian Williams, In Proceedings of the

Twenty-third International Joint Conference on Artificial

Intelligence (IJCAI-2013), August 2013.

[2] A goal-oriented interface to consumer electronics using

planning and commonsense reasoning, Henry Lieberman and Jose ́

Espinosa, In Proceedings of the 11th international conference on

Intelligent user interfaces, pages 226–233, New York, NY, USA,

2006. ACM Press.

[3] Commonsense reasoning in and over natural language, Hugo

Liu and Singh P., In Proceedings of the 8th International

Conference on Knowledge-Based Intelligent Information &

Engineering Systems (KES-2004), Brighton, U.K, 2004.

